1992 Annual Report

Colorado State University
PROJECT DIRECTOR STATEMENT

Perhaps the most fundamental activity in any society is food production. The products produced by farmers and ranchers are essential for survival. In the United States advanced technological developments have made it possible for a relatively few highly skilled agriculturalists to produce most of the food and fiber required to meet the Nation's needs (3% of the U.S. population). Unfortunately, many of these technical advances have placed many of these highly skilled farmers, farm workers, and farm families in harms way. Agriculture is the most hazardous occupation in America. Death or disability of a family member can have a profound effect on the social and economic wellbeing of people in any rural community.

The HIGH PLAINS INTERMOUNTAIN CENTER FOR AGRICULTURAL HEALTH AND SAFETY (HI-CAHS) was established at Colorado State University in 1991 with funding from the National Institute for Occupational Safety and Health, (NIOSH).

HI-CAHS is dedicated to the improvement of the health, safety and wellbeing of the residents of Colorado, the high plains, and the Rocky Mountain Region. Achievement of this mission is by the application of preventive medicine through education, research, service, and evaluation.

Introduction

HI-CAHS was established to address the occupational health and safety needs of Colorado and the Rocky Mountain Region. HI-CAHS addresses health and safety through a network of farmers, ranchers, agribusinesses, Cooperative Extension, and farm organizations. The approach used is lay and professional education, research, preventive services (hazard evaluation and control), and program evaluation. The program is multi-disciplinary drawing on expertise from; the Institute of Rural Environmental Health, the Departments of Social Work, Agricultural and Chemical Engineering, the School of Occupational and Educational Studies, the Human Factors Research Laboratory, and the Cooperative Extension. Off campus participants are the Greeley Clinic (Occupational Medicine), and the National Jewish Center for Immunology and Respiratory Disease. SALUD Migrant Labor health clinic in eastern Colorado is an active participant providing direct access to farm laborers.

NIOSH was the founder and is the cornerstone of HI-CAHS programs. Another significant organizational participant in HI-CAHS is the Occupational Safety and Health Administration (OSHA). OSHA's participation is as a partner with NIOSH in the injury and disease prevention component through the 7(c)1 Consultation Program. This relationship between two federal agencies is truly unique, and a testament to progressive thought and leadership on the part of both agencies.

HI-CAHS has just completed its first year. Much of the first year has been dedicated to start up, meetings, organizing, planning, implementing and hiring of new personnel. However, there has been tremendous progress in all program areas. What follows is a view of the first year's progress.

Contents

Education & Training 1
Research 3
Service 5
Evaluation 7
Staff 9

Advisory Committee:

Dr. Jerry Appelbaum
Corporate Medical Director
Gates Clinic, Inc.

Mr. Bart Chadwick
Regional Administrator
U. S. Department of Labor - OSHA

Ms. Jennifer Felzeim
President
Women in Farm Economics

Mr. Billy Johnson
Future Farmers of America

Dr. W. Dennis Lamm
Assistant Director
Cooperative Extension

Ms. Jane McCammon
Colorado Department of Health
DCEED

Mr. Orville Pieper
Coordinator of Young Farmer and Cooperative Education
Northwestern Junior College

Mr. Ben Rainbolt
President
Agriculture Teachers Association

Mr. Buford Rice
Executive Vice President
Colorado Farm Bureau

Mr. John Stencel, President
Rocky Mountain Farmers Union

Ms. Robbie Wyckoff
National Association of Wheat Growers Foundation
Farm Safety Co-Chairperson
Introduction

The Outreach Education and Training Unit was created to assist center personnel in delivering their message. During the first year of operation the team has been instrumental in designing instructional products and participating in the delivery of public presentations and workshops.

Cooperative Extension Train-the-Trainer Workshop

This workshop was designed for agents to enable them to help us promote health and safety for agricultural workers and their families. Training and delivery "best practices" for adult learners were highlighted and a specific module on Farm and Ranch Emergency Pre-planning was given to participants. A presentation planning template was shared to encourage agents to develop their own modules that best respond to the health and safety needs of their farm and ranch communities.
Public Presentations

Several presentations were developed and delivered to these groups. Topics ranged from equipment safety to emergency pre-planning.

- Agricultural Health & Safety Workshop
- Young Farmers Associations
- Vocational Agricultural High School Programs
- Front Range Community College - Agricultural Education Programs
- Rural Emergency Medical Technician Programs
- National Association of Wheat Growers
- Kids Farm Safety Day Camps
- Colorado Cooperative Council
- Platte Junior High School
- Colorado Fur Trappers Association

Products

The following products were developed to support education and training.

- Farm and Ranch Emergency Pre-Planning Module (including overhead transparencies)
- Brochure explaining HI-CAHS services
- Newsletter format
- Farm Electrification Model - see photo (fold-up 3' x 4' model farm that identifies common electrical hazards)
- Review of the literature related to Exhibit Booth Design and Staffing
Introduction

HI-CAHS is currently conducting research to improve the safety and health of the families that work on farms and ranches. The research at HI-CAHS includes investigating the adaptation of older tractors for the mounting of rollover protective structures (ROPS), monitoring grain dust exposures on farms and elevators during harvest and investigating carbon monoxide exposures at high altitudes.

ROPS Design, Construction and Testing for Pre-ROPS Tractors

Tractor rollover is a major cause on fatalities on farms and ranches. Over 200 tractor rollover fatalities occur on U.S. farms annually. Although rollover protective structures (ROPS) can reduce the possibility of serious injury during a tractor rollover, many tractors are not designed to support a ROPS. The objective of this project is to use ROPS testing simulation and laboratory and field testing of ROPS performance to develop a suitable modification so that ROPS can be successfully attached to pre-ROPS tractors (tractors not designed to support a ROPS).

A laboratory ROPS-frame testing apparatus was designed and constructed. The maximum loading capacity of the structure was designed at 20,000 pounds. Six ROPS tests have been conducted. Two tests were used to verify the recording instruments and investigate the deflection of the support structure under load. Two tests, using the same ROPS, were utilized to reproduce the ASAE ROPS test procedure (ASAE Standard 5519). Two tests were conducted to evaluate the ROPS performance when attached to an unmodified pre-ROPS frame (axle housing of a Ford 800 series tractor).

A finite element model of a ROPS-frame combination was developed using a pre-ROPS tractor (Ford 800 Series) and a commercially available ROPS. The finite element testing revealed high loads at the point of connection of the ROPS to the frame (axle housing).

The results of the laboratory testing and finite element simulation were comparable, indicating the maximum loads are exhibited at the connection of the ROPS to the axle housing. Strain gauges, mounted at the appropriate locations on the ROPS and axle housing, were used to verify the high stress levels.

Based on the results of these two tests, an adaption to mounted between the ROPS and the axle housing has been designed to reduce the stress levels. This adaption is designed to allow existing commercially available ROPS to be mounted to the pre-ROPS Ford 800 series tractor. Test results indicate improved ROPS supporting capability of the axle housing with the adaption.

A Characterization of the Potentially Pulmonary Toxic Components of Winter Wheat Grain Dust ON Farms and Elevators During Harvest

Acute and chronic respiratory distress due to conditions such as grain fever syndrome, asthma, allergic alveolitis and chronic bronchitis following occupational exposure to grain dust has been reported. The etiologic agent(s) in grain dust causing these conditions are as yet not well defined. Most scientific information on the health effects of grain dust has come from grain elevators. Analysis of dust at harvest should produce different components of health significance. In order to better characterize the potentially pulmonary toxic components of winter wheat grain dust, industrial hygiene surveys were conducted at 8 farms and 7 elevators in northeast Colorado during the 1992 wheat harvest.
Airborne dust samples were analysed for microbiological content, pesticide insect and mite fauna, silica and endotoxins. The different microbiological airborne concentrations measured in colony forming units per cubic meter (CFU/M3)(\pm standard error) included total bacterial plate count (TPC), fungi, gram negative bacteria (GNB), and thermophilic organisms (Therm.). In addition, the percent respirable silica using the 10 mm cyclone, organophosphate pesticides using a fiberglass filter cassette and a XAD absorption tube and a particle distribution and total mass concentration in mg of dust per cubic meter of air using the Marple cascade impactor was done.

<table>
<thead>
<tr>
<th>Agents</th>
<th>CFU/M3 (\pmS.E.) Farms</th>
<th>CFU/M3 (\pmS.E.) Elevators</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC</td>
<td>75,960 (15,418)</td>
<td>1,432,699 (194,537)</td>
</tr>
<tr>
<td>Fungi</td>
<td>20,522 (\pm2,899)</td>
<td>196,587 (\pm26,291)</td>
</tr>
<tr>
<td>GNB</td>
<td>30,885 (\pm5,665)</td>
<td>448,577 (\pm13,516)</td>
</tr>
<tr>
<td>Therm.</td>
<td>7,771 (\pm3,475)</td>
<td>14,668 (\pm3,488)</td>
</tr>
</tbody>
</table>

Table 1. Mean Values of Grain Dust Microbiology Parameters Measured during the Colorado Wheat Harvest 1992

Thermophiles included both actinomycetes and bacteria, but were only counted as a group and ranged from nondetectable to 17,862 CFU/M3 on farms, while elevators had a mean count of 13,872 (\pm3388) CFU.

Pesticide analysis found I-Naphthyl isothiocynate at 3 farms (mean value = 77.6 mg/M3), while 2 elevators had a mean of 27.5 mg/M3. All respirable silica levels were below 0.1 mg/M3 quartz. Total dust mass concentration exceeded in all cases the TLV of 4 mg/M3, with mean concentrations of 8.5 and 18.6 mg/M3 occurring on farms and elevators, respectively. Microbial levels and dust particle characteristics were such that adverse respiratory effects could result.

Altitude and Carbon Monoxide Exposure

Carbon monoxide (CO) exposure in agricultural work may occur through use of gasoline-powered equipment, a situation that is likely to be worsened by operation in confined spaces (barns, sheds, etc.). The toxic effects of CO are a result of combination with hemoglobin in the blood, preventing it from carrying the normal amount of oxygen to the tissues. At high altitudes, less oxygen is available to reverse this effect. This project seeks to examine the effects of occupational exposure to CO on blood concentrations in individuals living and working at different altitudes. The impact of physiological adaptation to altitude on blood CO has not been considered in previous studies.

Approval has been obtained from CSU's Human Research Committee for the protocol to be used in this study. Breath and capillary blood samples will be collected from each subject prior to the work shift. Ambient CO levels will be measured during the work shift with a small electric monitoring device (Drager 190). Another breath sample will be collected at the end of the work shift. Breath CO concentrations correlate with blood levels and may be used as a surrogate measurement so that blood samples need only be obtained once from each subject. The blood sample will allow measurement of total and CO-bound hemoglobin.

Development of an acceptable method for measuring CO in exhaled air has focused on the use of the Drager monitors (for ease in completing field work at distant sites). Although tests in the laboratory have demonstrated that the monitors are probably suitable for measurement of CO in human breath samples, their accuracy and reproducibility when taken into the field (for other projects) has been unsatisfactory. This has raised doubts about the use of these monitors in this project. If better performance of the monitors cannot be obtained on a consistent basis, development of a more reliable method (using IR chromatography) will be considered.

The design of the study includes obtaining data from people that live and work at the highest altitudes in Colorado (> 9,500 ft). It is important to obtain results from individuals living over as broad a range of altitudes as possible in order to test the critical hypothesis of this study. In order to obtain sufficient number of subjects at the highest altitude, some individuals working in occupations other than agriculture (with significant CO exposure) are included in the study. High altitude research in farming is unique to the HICAHS project.
Service (sūrˈ vis) n.

An act of assistance or benefit to another or others.

Hazard Evaluation

Promotional activities early in the year resulted in a high level of interest in on-site services available through the center. Owners and operators of a variety of agbusinesses requested health and safety assistance at their workplaces.

These businesses included:

- Farmer COOPs
- Dry Bean Processing Facilities
- Feedlots
- Nurseries
- Sawmills
- Other Agricultural Services

On-site hazard evaluation was a series of events designed to define the scope of services that were to be provided; assist the owner and/or operator in the identification of hazards at his or her workplace; and, to provide a written summary of on-site activities including details on how to eliminate hazardous conditions. Follow-up visits, when needed, were also conducted to assist in hazard correction.

Center industrial hygienists and safety specialists conducted 45 visits to these businesses at which a total of 468 workers were employed. The average workforce at each site was 24 employees.

Through consultation with employers and employees, Center safety specialists identified 206 hazards to which workers were exposed. Two (2) conditions were imminent dangers which were corrected immediately in a cooperative effort between Center staff members and workplace representatives. One hundred thirty six (136) conditions were identified that represented serious risks to exposed workers. Through ongoing assistance and consultation, these conditions were eliminated or modified resulting in the protection of more than 400 agricultural workers. The remaining 68 conditions identified were non-serious in nature, but were violations of regulatory standards. Figure 1 is a summary of the types of hazards identified during on-site consultation.

Figure 1.

General Classes of Hazards
(as per cent of all hazards identified)

Formal and informal training was also conducted as an integral part of hazard evaluation visits. Forty-four (44) employers and 73 employees took part in training sessions designed to reduce or eliminate hazard potential through education. These training sessions were conducted in response to needs identified during hazard evaluation.
Special Projects

Hazard Warnings

A significant outcome of hazard evaluation visits was the identification of a lack of hazard warning through appropriate labeling on anhydrous ammonia tanks. Center staff members designed an appropriate label and to date more than 300 have been strategically located on stationary and mobile tanks to alert workers of the associated hazards. The Center is currently serving as the facilitating group in an attempt to design a single hazard warning label that will satisfy all regulatory considerations and agencies. This is a direct response to the needs expressed by users of this product since the multiple labels now required are often confusing and redundant.

Musculoskeletal Injuries

The risk of back injuries when handling agricultural commodities, which typically weigh 100 pounds or more, was well documented through an ergonomic study conducted in dry bean handling facilities. Center health and safety specialists assisted operators with a re-design of lifting and palletizing techniques which should significantly reduce musculoskeletal injuries in this workforce.
Introduction

When accepting the role of a NIOSH supported center, HI-CAHS committed itself to test various methods for increasing health and safety conditions on farms and ranches. To accomplish this goal, the innovative HI-CAHS education and service programs are carefully evaluated to assess their effectiveness. Successful programs can then be offered throughout the region.

Evaluation Service

The Evaluation component offers the following ongoing services through HI-CAHS.

Instrument Development: forms to assess the effectiveness of center activities are developed by the Evaluation component. Two such forms, one for educational presentations and one for consultation visitations are shown.

Activities Tracking System: a system of recording, coding and analyzing the time expended and services offered by HI-CAHS personnel has been developed. This system profiles the overall contributions of the Center.

Consultation and Review: evaluation consultation is available to researchers within the Center and for other ag health and safety projects outside the Center.

Research Suggestions: prospective health and safety research topics are suggested to agricultural organizations and design assistance is made available for such projects.

Colorado Agriculture Health and Safety

HI-CAHS is interested in determining the most efficient and effective ways to provide agriculture health and safety consultation and education programs. This requires that persons who provide these programs understand the importance of the various issues to farmers and ranchers, determine the adequacy of existing programs, and discover the characteristics of the most effective efforts to provide health and safety education.

To gain this information, the Agriculture Health and Safety Survey has been sent to more than 1,100 persons in Colorado. By contacting health personnel, coop operators, farm and ranch organizations, elevator operators and implement dealers, for example, it is expected that the perceptions of a much larger number of farmers and ranchers will be reflected. Returned questionnaires are now being tabulated.
HI CAHS Staff

Office

Mary Selby, Nina Whitehead (seated) and Jackie Turnberg

Evaluation

Vicky Buchan, Chuck Neidt, Brad Sheafor, Sue Hewitt and Mary Selby (not pictured: GRA Lisa Schmiesing)

Education & Training

Bart Beaudin and Rex Fockler

Service

Bob Grundemann, Del Sandfort, Sarah Robins, Mitch Little and Ken Gordon

Research

Don Beard and Paul Ayers (not pictured: Howard Ramsdell)
Colorado State University is an equal opportunity/affirmative action institution and complies with all federal and Colorado State laws, regulations, and executive orders regarding affirmative action requirements in all programs.