Table of Contents

General Information ... 1
General Requirements and Procedures .. 1
Deadline Dates for Graduate Students .. 2
Academic Performance ... 2
Master’s Degrees ...
 Plan A Master of Science Program .. 3
 Plan B Master of Science Program .. 4
Integrated Degree Program (IDP) M.S. Programs ... 5
Ph.D. Degrees ..
 Selection of Adviser and Graduate Advisory Committee .. 6
 Preliminary Examination ... 8
 Dissertation ... 10
Integrated Degree Program (IDP) Admission to Masters of Science Programs 12
Integrated Degree Program (IDP) in Health Physics ... 12
Integrated Degree Program (IDP) in Toxicology ... 13
Requirements for Graduate Degrees in Environmental Health Specializations 14
 Epidemiology Specialization ... 14
 Industrial Hygiene Specialization ... 18
 Ergonomics Focus ... 22
 Toxicology Specialization .. 25
Requirements for Graduate Degrees in Radiological Health Sciences 27
 Health Physics Specialization ... 27
 Radiation Cancer Biology and Oncology ... 29
 Radiology Residency Program .. 30
Integrated Degree Program (IDP) Masters Degree Program In Health Physics 31
Admissions Information ... 33
ERHS Section Requirements for Admission ... 33
 Radiation Cancer Biology and Oncology ... 33
 Epidemiology .. 33
 Occupational and Environmental Health .. 34
 Health Physics .. 35
 Toxicology ... 35
 Radiology Residency .. 35
IDP Masters Programs in Health Physics and Toxicology ... 36
General Information

The Department of Environmental and Radiological Health Sciences faculty is responsible for training students in two degree programs: Environmental Health and Radiological Health Sciences. It has adopted the procedures below to fulfill requirements for graduate degrees in both programs. The department offers formally approved Specializations in Epidemiology, Industrial Hygiene and Toxicology for the M.S. and Ph.D. degrees in Environmental Health and in Health Physics for the M.S. degree in Radiological Health Sciences. Completion of the requirements of one these approved Specializations will be noted on the student’s transcript.

This manual has been prepared to acquaint you with the policies and regulations that govern the graduate and research programs in the Department. This document should be read in conjunction with the current Graduate and Professional Bulletin of Colorado State University. It has been written to emphasize certain information contained in the Bulletin and to outline specific department policies and procedures. These requirements supplement, but not supersed, all statements in the Colorado State University Graduate and Professional Bulletin. See: http://graduateschool.colostate.edu/faculty-staff/bulletin.aspx

Procedures and Requirements for Graduate Degrees in Environmental Health and Radiological Health Sciences

General Requirements and Procedures

Filing the Program of Study

The GS Form 6 describes the student’s program of study and must be filed with the Graduate School before the time of the fourth regular semester registration. All new Program of Study GS Form 6’s are completed electronically and then printed for signatures and submission. The student plans a specific program of study in concert with his/her adviser and graduate committee to arrive at an adequate level of disciplinary competency appropriate to the degree sought. The plan that is developed must meet or exceed the published minimum requirements for the degree sought. When this plan is completed and signed by the student, the adviser, the department head and then signed and approved by the dean of the graduate school, it is a formal statement of the course-work requirements for the degree. A committee member cannot require a student to take additional courses that are not listed on the plan unless the student and advisory committee agree. Nor can the course requirements for the degree be altered by the student unless a change to the Program of Study is approved by the advisory committee.

Changing the Program of Study

Course changes to a Program of Study GS Form 6 are made on the Application for Graduation GS Form 25. The Graduate School regards the Program of Study as an individualized curriculum designed by the advisory committee to assist the student in achieving his or her educational objectives. Poor performance in a course is not an appropriate reason for removing a course from the Program of Study. A request for changes to a Program of Study must be signed/approved by the student and by the adviser, the head of the department, and the Dean of the Graduate School.
Fulfilling the Course Requirements on the Program of Study
Courses taken while a graduate student is registered at Colorado State University may be considered for fulfilling the Program of Study requirements only if the student has received grades of C or better. For courses that represent either undergraduate excess or transfer credit, grades of B or better are required. Advisory committees may set higher standards.

Waivers of Required Course Requirements
Waivers of course requirements may be requested by the student with approval of the student’s graduate advisory committee to the department head. Waivers may be requested when previous course work or experience substantially duplicates course content. Requests must be accompanied by copies of course outlines or syllabi from previous institutions as documentation.

Students should be aware that successful completion of preliminary and/or final examinations will require knowledge of material covered in all required courses.

Group or Independent Study and Non-Thesis Research -- The Department offers independent study in selected areas of environmental and radiological health sciences to provide students an opportunity to independently study, or investigate, a specific topic or topics under the guidance of a faculty member with expertise in that area. The student(s) and faculty member should prepare a written statement to include the course number, number of credits, objectives and goals of the independent study, tasks to be completed by the student, basis for evaluation of the student’s performance, and the grading option to be used. Students may receive a traditional letter grade, or the student may be graded pass/fail at the instructor’s option.

Deadline Dates for Graduate Students

Please refer to the Graduate School website at http://www.graduateschool.colostate.edu for a complete listing of Graduation Requirements and Deadline Dates.

Academic Performance

The student's academic performance will be evaluated according to Graduate School guidelines. The Graduate School requires a cumulative 3.0 grade point average in all regular course work. Grades of C or higher must be earned in all courses shown on the Program of Study GS Form 6.
Master’s Degrees

Procedures and Requirements for the Master of Science Degree Programs in Environmental Health and Radiological Health Sciences

Adviser
Students are encouraged to select their major adviser during the first semester, but must do so no later than the end of the second semester. Selection of the major adviser will establish a personal and professional relationship that will have a major impact on the student's growth and subsequent career. The choice of adviser should be based on personal interviews and a familiarity with both the professor’s past work and planned work in which the student is likely to be involved. The selection must be mutually acceptable to the student and to the professor, and must be approved by the department head as indicated on the student's Program of Study GS Form 6. Major advisers must have their primary appointment in ERHS.

Graduate Advisory Committee
The Graduate Advisory Committee for the degree of Master of Science must consist of at least three faculty members. The members are as follows: 1) the adviser who serves as chairperson of the committee and who must hold academic faculty rank as a professor, associate professor, or assistant professor of any appointment type within the department; 2) one or more additional members from the department; and 3) one member from an outside department who, appointed by the Vice Provost for Graduate Studies, represents the Graduate School. The outside committee member appointed by the Vice Provost for Graduate Studies must hold a regular, special, transitional, joint, or emeritus/emerita faculty appointment at Colorado State University. ERHS faculty affiliates are considered members of ERHS and cannot serve as the outside committee member. Individuals who are not academic faculty but who have special expertise may serve on committees in addition to the prescribed members, but may not vote regarding examination results.

The GS Form 6 must be filed with the Graduate School before the time of the fourth regular semester registration.

Seminar Requirement
All candidates for the M.S. degree (Plan A or Plan B) are required to complete a minimum of one credit of a seminar course. Eligible seminar courses include all approved university course listings in seminar format such as ERHS 693 A-D (Research Seminar), organized journal clubs taught as ERHS 696 (Group study), CM 792 (Cell and Molecular Biology seminar) and ERHS 692. The Graduate Advisory Committee may require additional credits of seminar courses.

Research Seminar (ERHS 693 A-D) -- Credits earned in ERHS 693 A-D are included on the GS-6 and count toward meeting total credit requirements. ERHS 693 A-D may be repeated more than once since their content changes each semester. However, credits earned in ERHS 693 A-D are not included in the 18 credit Departmental course minimum and are not considered formal coursework.

Plan A Master of Science Program

The Plan A program consists of a minimum of 30 semester credits. A total of 18 credits must be taken from the ERHS department (this includes the required courses) and at least 16 of the 30 credits must be at the 500 level or above. At least three credits (of the 30 total program credits) at or above the 500 level must be taken from a department other than ERHS. Credits for thesis work are allocated according to time spent on research work and recorded through an appropriate course
number. Credits earned for research work do not count toward the 18-credit departmental course requirement, but they are part of the 30-credit program of study.

Plan A requires the preparation of a thesis which addresses a research topic in the specialty area. Prior to beginning a research project, the Master of Science student will submit to his/her committee a research protocol for their approval.

Thesis
The Plan A Master of Science student prepares a well-written, comprehensive thesis based on the research problem. The student must have completed a typed final draft of the thesis and submitted a copy thereof to each committee member at least two weeks prior to the final examination. The student's adviser must agree that the thesis is of such quality and completeness as to warrant setting a date for the examination.

Manuscript
Each candidate is required to prepare at least one manuscript suitable for publication on the subject matter of his/her research unless this requirement is specifically waived in writing by the major adviser.

Final Examination
Each candidate for a Plan A master's degree must pass an oral final examination encompassing both academic and research training. The final examination must be scheduled at least two weeks in advance with the department. Preceding the final examination, the student must present a 30-minute seminar based on his/her research, which will be open to the university community and invited guests. The remainder of the examination may be open to the public by agreement of the student and adviser. Faculty of the department not on a committee may attend any examination and may participate at the invitation of the committee chair. Passing the final examination requires a majority vote of the graduate advisory committee. A tie vote is interpreted as failure to pass the examination. At the discretion of the committee, the final examination may also include a written part. At least one month before the final examination, the adviser must inform the student and the committee members of the nature and scope of the examination. A candidate who fails the final examination may be re-examined once per the Graduate School guidelines and, for the re-examination, may be required to carry out additional work. It is the student's responsibility to obtain the appropriate forms from the Graduate School website prior to the examination and ensure return to the Graduate School of the completed Report of Final Examination Results (GS Form 24) after the relevant signatures have been obtained. Final examinations must be scheduled with the Department Head as well as with all committee members.

Plan B Master of Science Program
The Plan B Master of Science program consists of a minimum of 36 semester credits. A total of 18 credits at the 500 level or above must be taken from the ERHS department. At least three credits (of the 36 total credits) at or above the 500 level must be taken from a department other than ERHS. An additional 9 credits of elective courses are chosen by the student in consultation with the Advisory Committee to develop particular skills or competencies. Credit may be earned for research, independent study, and group study for the Plan B option.

The specialization sought for the plan B may require one of the following for completion of the degree: (a) professional paper with a final oral examination, or (b) comprehensive written final examination. Each of these is described below.
Professional Paper and Oral Final Examination
A professional, scholarly paper on a topic chosen by the student in consultation with the adviser will be prepared and submitted in final draft form to the Advisory Committee at least two weeks prior to the final examination. The format of the paper may be a comprehensive literature review, a research problem, a data analysis or other format acceptable to the Advisory Committee. It may be presented in publication format for a refereed journal in the student's area of specialization. The department requires a copy of the paper for its files. Professional papers are not submitted to the Graduate School for review.

The final examination must be scheduled at least two weeks in advance with the department. Preceding the final examination, the student must present a 30-minute seminar based on his/her research or professional paper topic, which will be open to the university community and invited guests.

Each candidate for a Plan B master's degree must pass an oral final examination encompassing both academic training and the professional paper. The examination may be open to the public by agreement of the student and adviser. Faculty of the department, not on a committee, may attend any examination and may participate at the invitation of the committee chair. Passing the final examination requires a majority vote of the committee. A tie vote is interpreted as failure to pass the examination. At the discretion of the committee, the final examination may also include a written part. At least one month before the final examination, the adviser must inform the student and the committee members of the nature and scope of the examination. A candidate who fails the final examination may be re-examined once per the Graduate School guidelines and, for the re-examination, may be required to carry out additional work. It is the student's responsibility to obtain the appropriate Report of Final Examination Results (GS Form 24) from the Graduate School website prior to the examination and ensure return of the completed form to the Graduate School after the relevant signatures have been obtained. Final examinations must be scheduled with the Department Head as well as committee members.

Comprehensive Written Final Examination
The Plan B Masters Toxicology program requires that a comprehensive final written examination be passed in lieu of a professional paper. This examination will include content from all required courses. A passing grade of B is required.

Integrated Degree Program (IDP) M.S. Programs

The Department of Environmental and Radiological Health Sciences offers an Integrated Degree Program (IDP) admission for CSU undergraduate students. Requirements for an IDP admission leading to the Master’s degree in Environmental Health or Radiological Health Sciences are described on pages 12-13.
Ph.D. Degrees

Procedures and Requirements for the Doctor of Philosophy Degree Programs in Environmental Health and Radiological Health Sciences

Each Doctor of Philosophy student must acquire an in-depth knowledge in the selected area of specialization and closely related areas. To be recommended for candidacy, students must do more than complete minimum course requirements. They must demonstrate to the satisfaction of their Graduate Advisory Committee that they possess the knowledge, abilities, and skills regarded as essential in the specialization chosen and a working knowledge of these disciplines which will permit the degree candidate to function in a scholarly manner.

A minimum of 72 semester credits in course work and research is required. A master's degree from an accredited college or university in an appropriate field may be accepted for a maximum of 30 credits. Students must complete the required courses described below for each discipline as well as at least 2 courses outside the department at the 500 level or above (for a total of at least 6 credit hours).

Selection of Adviser and Graduate Advisory Committee

Adviser
Students are encouraged to select their major adviser during the first semester, but must do so no later than the end of the second semester. Selection of the major adviser will establish a personal and professional relationship that will have a major impact on the student's growth and subsequent career. The choice of adviser should be based on personal interviews and a familiarity with both the professor's past work and planned work in which the student is likely to be involved. The selection must be mutually acceptable to the student and to the professor, and must be approved by the department head as indicated on the student's Program of Study GS Form 6. Major advisers must have their primary appointment in ERHS.

Graduate Advisory Committee
The graduate advisory committee for a Doctor of Philosophy student shall consist of a minimum of four members. A fifth member is encouraged but not required. The committee should be composed of those persons best qualified to direct and evaluate the student's program of study. Responsibility for selecting the committee lies with the adviser and the student, with the approval of the department head.

The members are as follows: 1) the adviser who serves as chairperson of the committee and who must hold academic faculty rank as a professor, associate professor, or assistant professor of any appointment type within the department or program granting the degree; 2) two additional members from the department; and 3) one member from an outside department who, appointed by the Vice Provost for Graduate Studies, represents the Graduate School. The outside committee member appointed by the Vice Provost for Graduate Studies must hold a regular, special, transitional, joint, or emeritus/emerita faculty appointment at Colorado State University. ERHS faculty affiliates are considered members of ERHS and cannot serve as the outside committee member. A fifth member is encouraged by the department for PhD students and may be added to the graduate committee, but is not required. The fifth member may be a second faculty member from outside the ERHS department or it may be a person qualified to serve on graduate committees (and approved, according to Graduate School guidelines) who works outside of the university, regardless of department affiliation. In addition to the basic membership, the committee may be supplemented by other members who may be capable of
aiding in the investigation by the student. Voting privileges of committee members shall be as defined by the Graduate School. Individuals who are not academic faculty but who have special expertise may serve on committees in addition to the prescribed members, but may not vote regarding examination results.

The committee will be formed after selection of the adviser and prior to completing the Program of Study GS Form 6. The Program of Study must be filed with the Graduate School before the time of the fourth regular semester registration. In the event that a change of a committee member is made, that change is done with Petition for Change in Committee form GS9A, available from the Graduate School website. All changes to the original committee must be approved by both the committee member added and the committee member deleted as evidenced by a signature or initial on the Petition for Change of Committee (form GS 9a) prior to approval by the department head.

Responsibilities of the Advisory Committee and Ph.D. Student

The student's graduate advisory committee shall provide guidance and supervision throughout the program of study. The initial meeting of the student with the committee should be held promptly after the committee is formed and the Program of Study GS Form 6 listing the required course of study must be filed with the Graduate School before the end of the third semester of residence. To assist the graduate advisory committee in its evaluation of the student's research progress, each student will meet at least annually with his/her committee. It is the student's responsibility to schedule the annual evaluation and to present materials that document the progress to date as described further below.

Seminar Requirement

All candidates for the Ph.D. degree are required to complete a minimum of two credits of a seminar course. Eligible seminar courses include all approved university course listings in seminar format such as ERHS 693 A-D (Research Seminar), organized journal clubs taught as ERHS 696 (Group study), CM 792 (Cell and Molecular Biology seminar) and ERHS 792. The Graduate Advisory Committee may require additional credits of seminar courses.

Acquiring Teaching Experience

All Ph.D. students are encouraged to gain experience in preparation and delivery of didactic material either through service as a Graduate Teaching Assistant (GTA) or through delivery of specific lectures as appropriate to his/her training or enrollment in Supervised College Teaching (ERHS 784).

Annual Progress Report

The student should prepare a written report which summarizes the goals of the research, describes progress during the past year, emphasizes significant accomplishments, and discusses problems encountered. The student should indicate changes in direction which have occurred during the past year and outline the specific goals or objectives and approaches to be used during the coming year. In addition, students will report on their academic progress based on their GS 6 forms. Progress reports should not exceed ten double-spaced typewritten pages, excluding tables, figures and references. The report must be distributed to all committee members one week prior to the meeting.

Evaluation of Performance

The committee should evaluate the student's course work and research progress. Persistent lack of progress will be grounds for dismissal from the Ph.D. program. The results of the annual evaluation, with the committee's recommendations, will be submitted by the graduate advisory committee in writing to the departmental office to be included in the student's file. Students failing to meet with the committee annually will have a hold placed on their registration for the following semester.
Preliminary Examination

Ph.D. preliminary and final examinations are scheduled in advance by the adviser. In order to assure communication to all concerned (student, adviser, all committee members, department head, and Graduate School) the intention to hold a Ph.D. Preliminary Examination is to be publicized two weeks in advance.

The Department of Environmental and Radiological Health Sciences has adopted the procedures below to fulfill requirements for Ph.D. degrees in both programs. These procedures are consistent with the rules of the Graduate School of Colorado State University, yet recognize the primary role of the student’s Graduate Advisory Committee in graduate education as well as the responsibility of the Department in assuring that high standards of academic quality are maintained. These standards include the required elements of written communication and critical thinking. The procedures apply to all new students who begin their graduate studies in the Fall 2006 semester and thereafter.

Components of the Written Examination for the Ph.D. degree

In order to meet the requirements for the Preliminary Examination, all students must take a written examination before the end of the fifth regular semester of full time registration or an equivalent period of partial registration.

Students must complete one of the following two requirements from each group:

- Preparation of a dissertation proposal describing the research to be conducted.
 OR
- Preparation of a research grant application to a funding agency (e.g., NIH) in the area of the student’s proposed research.

AND

- Pass a written examination prepared by the section faculty in the student’s area of study.
 OR
- Pass a written examination prepared by the student’s graduate advisory committee.

Selection of the method(s) for meeting each of these requirements shall be at the discretion of the student’s graduate committee in consultation with the student.

Students must defend their written dissertation or research proposal during the oral examination administered by the committee. The oral examination may also include areas that were covered during the written examination prepared by the graduate committee or section faculty.

Objectives of the Written Components for the Ph.D. degree

The faculty requires doctoral students to show a competence for written communication, critical thinking, and scientific vision. Therefore, the preparation of a dissertation proposal or research grant application is required to meet the following objectives:

- Demonstrate a thorough understanding of the current ‘state of the science’ in their selected discipline.
- Identify critical gaps in the ‘state of the science’ of their discipline.
- Construct an original research plan to address such gaps and identify the benefits of their expected results.
- Communicate these ideas in a clear, concise, and scientifically-sound fashion.
• Provide the basis for a ‘research plan’ between the student and committee. In theory, successful completion (and dissemination) of the proposal objectives should constitute a means to degree completion.

The faculty requires doctoral students to show a command of the fundamental scientific skills within their selected discipline and to be able to synthesize ideas that are based on the skills and knowledge acquired in individual courses. Therefore, the purpose of the written examination is to evaluate the student’s comprehensive mastery of quantitative, qualitative, and knowledge-based skills in their selected discipline.

Guidelines for each of the four types of written examinations are described below.

1. Dissertation Proposal

The dissertation proposal must represent original research conceived and conducted principally by the student. The dissertation proposal should contain at minimum:

• A statement of the hypothesis and objectives of the intended research.
• A background and significance section that reviews pertinent literature and places the proposed dissertation research into context, justifying the work and its originality.
• A description of the methods to be used including an outline of experiments or data collection methods, laboratory methods to be applied and statistical analyses.

Where the dissertation is anticipated to include chapters that will become distinct papers for submission, a separate preparation of sections should be made for each dissertation chapter.

2. Research Grant Application

A research grant application in the form required by that agency (e.g., NIH) in an area appropriate to that student’s specialization may be used to satisfy the requirement for preparation of a written research proposal. The research grant application must represent original work on the part of the student. If done in this form, it may contain additional appendices which 1) describe in greater detail the student’s thought processes and intentions and 2) contain additional references and supporting materials. Where the student’s research forms part of a larger team effort supported by funded grants, the student’s proposal should emphasize his or her specific original contributions to the team effort.

3. Written Examination Prepared by Section Faculty

The content and format for this examination shall be determined by the Section faculty who will prepare and grade the examination. The timing and administration of the examination shall be coordinated by the Section Head. Students must receive a majority of Pass grades in order to pass the examination. Students failing the examination may retake the examination once, within one year of the initial examination. Students who do not retake or pass the written examination within one year will be judged to have failed the Preliminary Examination.

4. Written Examination Prepared by the Graduate Advisory Committee

A written examination prepared by the graduate advisory committee containing questions from each member will cover required course material and other topic areas relevant to the student’s intended dissertation research. Students must receive a
majority of Pass grades in order to pass the examination. Students failing the examination may retake the examination once, within one year of the initial examination. Students who do not retake or pass the written examination within one year will be judged to have failed the Preliminary Examination.

Oral Examination

Students must complete an oral examination to meet the requirements for the Preliminary Examination as described in the Graduate and Professional Bulletin (page 23). The Graduate and Professional Bulletin states, in part “A preliminary examination shall be administered at least two terms before the final examination to determine whether the student is qualified to continue toward the doctorate. The usual procedure is to have written examinations in the field of specialization and supporting areas followed by an oral examination. In order to assure full information to all concerned (student, adviser, all committee members, department head, Graduate School), the intention to hold a Ph.D. Preliminary Examination is to be publicized two weeks in advance by the adviser.” The oral examination follows completion of the written examination. Successful completion of the oral examination as shown on the Report of the Preliminary Examination for the Ph.D. Degree form GS16 admits the student to candidacy for the Ph.D. degree.

The oral examination will be conducted by the Graduate Committee with the Head of the department or his/her designee in attendance as a nonvoting participant. The scope of the oral examination may include components from the written examination such as the dissertation proposal and written responses to questions provided by the committee or section faculty. The oral examination may include other discipline-specific areas as specified by the graduate advisory committee to the student prior to the oral examination.

- The graduate advisory committee shall evaluate the performance of the student on the oral examination on a pass/fail basis by majority vote of the committee.
- The student must receive a passing evaluation on the oral examination before being admitted into candidacy for the doctoral degree. Students who do not receive a passing evaluation may be re-examined at a time established by the graduate advisory committee no later than one year following the date of the original oral examination and not earlier than two months after the first oral examination.
- A student who does not receive a passing evaluation in two attempts or who elects not to stand for oral re-examination within a one year period following the date of the initial examination shall be dismissed from the program.
- Report of the Preliminary Examination for the Ph.D. Degree form GS16 must be completed and filed by the student with the Graduate School within two working days after the examination.

Dissertation

The student is required to prepare a well-written and comprehensive dissertation based upon original and independent research conducted during the course of study. A bound copy of the dissertation, containing an original signature page with the department head and the committee members’ signatures, must be submitted to the department for its file.

TIME LIMIT

There is a ten-year time limit for completion of the master’s or doctoral degrees. Courses to be applied toward fulfilling the requirements for the master’s and doctoral degrees, including any
which may have been transferred from another institution, must have been registered for and completed within the ten years immediately preceding the date of completion of requirements for the degrees.
Integrated Degree Program (IDP) Admission to Masters of Science Programs

The Department of Environmental and Radiological Health Sciences (EHRS) has established an Integrated Degree Program (IDP) for advanced undergraduate students that culminate with a B.S. degree and an M.S. degree. Currently this option is available for students wishing to complete a M.S. degree in Environmental Health with a specialization in Toxicology or in Radiological Health Sciences with a specialization in Health Physics. The program is designed to culminate in the awarding of the M.S. degree after 5 years at CSU. The M.S. in Health Physics is accredited through the Accreditation Board for Engineering and Technology (ABET).

Undergraduates enrolled in a bachelor’s degree program at Colorado State University and who have completed at least 75 credits of coursework toward their degrees, including 15 credits in upper division courses required by their major, with a cumulative GPA of 3.0 or above, may apply for admission to the combined bachelor’s/master’s degree programs within their majors. Such programs have been established to encourage students with strong scholarly and/or research interests to begin their graduate programs during their junior year and to provide flexibility in the scheduling and completion of upper division undergraduate requirements along with the graduate course requirements for the master’s degree. The graduate degree will be awarded only after, or concurrently with, the award of the B.S. degree.

IDP Program in Health Physics

Incoming undergraduates follow their regular BS curriculum for the first year. During the second year, students with outstanding performance in mathematics and science can begin to consider the Track III option. This allows early admission to Graduate School before completion of the bachelor’s degree. Interested students are advised to:

1) increase their credit hours,
2) enroll in the more mathematically-oriented PH 141 and 142 physics courses
3) enroll in mathematics through MATH 255 (Calculus for Biological Sciences II).

Although the program does not require additional credits in the first or second years, interested students are advised to increase their credit hours in these years, especially in the university required curriculum courses. This will insure that courses required in later semesters can be accommodated.

Students who perform well and maintain an interest during the third year are eligible to apply to the IDP program. These students are advised of the application procedures for IDP admissions to the Graduate School. They are also notified that graduate school tuition rates will be applicable once a total of 120 credits have been accumulated. They are also eligible to apply for Graduate Assistantships after completing 120 credits. These students would also enroll in Cell Biology (BIO 310) as a prerequisite for Principles of Radiation Biology (ERHS 550).

Students may return to their standard BS curriculum during their third year. Any credits in physics and mathematics courses may be applied towards the B.S. degree. Progress towards normal completion of the BS degree is maintained following withdrawal from the Track III program at this time.

Students are admitted to the Graduate School and begin taking graduate level courses in their fourth year. A graduate student adviser is selected at this time. By the end of the fall semester of their fourth year, a Graduate Advisory Committee is formed and Program of Study (GS-6) is submitted to the Graduate School. Students may withdraw from Track III and return to the standard BS curriculum in the spring semester of their fourth year. Progress towards normal
completion of the BS degree may be maintained via credits earned in ERHS 530 and BZ 310 if they can be applied towards the students BS program.

Students will receive credit for their MS-HP practicum during the fall semester of their fifth year by preparing documents and formal reports describing their radiation-related experiences. It is important to note that when they begin their practicum, IDP students will have completed the same formal course work and laboratory exercises as those students in the regular MS-HP graduate program.

Students will receive a B.S. at the end of the fifth year upon completion of all program requirements. Because of time restrictions and scheduling, the M. S. degree will be a Plan B degree. The M.S. degree will also be awarded at the end of their fifth year upon completion of a professional paper, presentation of a seminar, and a successful oral final examination. Students who wish to obtain a Plan A M.S., may do so but will need to conduct research, prepare and defend a thesis, and will likely need to spend additional time at CSU.

IDP Program in Toxicology

A student who is interested in applying for the IDP program in Toxicology should meet with a representative from the Toxicology section for advising. Generally, a student should apply for this program of study during their 3rd year as an undergraduate student. At that time, students would then be counseled to take additional courses during their fourth year which would not count toward their undergraduate degree, but will count toward their Master’s program. Courses will be chosen by the student and advisor to fulfill the requirements of the Master’s degree program in Toxicology, and augment the student’s education in specific areas that will be outlined by the student and the advisor.

Students will receive their M.S. degree at the end of their fifth year upon completion of the requirements outlined previously for a plan B Masters in Toxicology. Those students who wish to perform independent research, defend a thesis, and receive a Plan A M.S. may do so, but will likely need to spend additional time at CSU.
Requirements for Graduate Degrees in Environmental Health Specializations

Except as described below for specializations in Environmental Health and Radiological Health Sciences degrees and the Graduate Program in Veterinary Diagnostic Imaging, all other program requirements are those described in the Graduate School Bulletin.

See: http://graduateschool.colostate.edu/current-students/student-resources/

EPIDEMIOLOGY SPECIALIZATION
M.S. Degree Programs

M.S. Plan A programs have a minimum of 30 semester credits with a thesis.
M.S. Plan B programs have a minimum of 36 semester credits with a professional paper

Required Courses (19 credits)

ERHS 532 Epidemiologic Methods (3)
ERHS 640 Advanced Epidemiology (3)
ERHS 658 Environmental and Occupational Epidemiology (3)
ERHS 693A Research Seminar: Epidemiology (1) (Registration every semester is strongly recommended)

STAT Course to be determined in consultation with advisor

One course from ONE of the following areas; 3 or more credits:

Environmental / Occupational Health
ERHS 520 Environmental & Occupational Health Issues (3)
ERHS 526 Industrial Hygiene (3)
ERHS 536 Advanced Occupational Health (3)
ERHS 540 Principles of Ergonomics (3)

Toxicology / Cancer Biology*
ERHS 502 Fundamentals of Toxicology (3)
ERHS 510 Cancer Biology (3)
ERHS 611 Cancer Genetics (2)
ERHS 733 Environmental Carcinogenesis (3)

Microbiology*
MIP 420 Medical and Molecular Virology (4)
MIP 530 Advanced Molecular Virology (3)
MIP 651 Immunobiology (3)
MIP 760 Mechanisms of Bacterial Pathogenesis (3)

Statistics*
STAT 511 Design and Data Analysis for Researchers I (4)
STAT 512 Design and Data Analysis for Researchers II (4)
STAT 523 Quantitative Spatial Analysis (3)
STAT 525 Analysis of Time Series I (3)
STAT 526 Analysis of Time Series II (3)
STAT 547 Statistics for Environmental Monitoring (3)
STAT 560 Applied Multivariate Analysis (3)
ERHS 642 Applied Logistic Regression (3)
Epidemiology Related Courses (2 credits, Plan A; 12 credits, Plan B)
Other courses in epidemiology or related areas, as approved by graduate advisory committee

Out of Department Requirement (3 or more credits)
Graduate level course work approved by graduate advisory committee

Research
Plan A: ERHS 699 Thesis (minimum of 6 credits)
Plan B: ERHS 695 Independent Study (minimum of 6 credits for professional paper preparation)

*A non-ERHS course cannot be used to meet both required and out-of-department requirements.
EPIDEMIOLOGY SPECIALIZATION

Ph.D. Degree Program

Ph.D. programs have a minimum of 72 credits. Up to 30 credits from a M.S. degree program in a related field may be transferred to the Ph.D. program.

Required Courses (26 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERHS 532</td>
<td>Epidemiologic Methods (3)</td>
</tr>
<tr>
<td>ERHS 640</td>
<td>Advanced Epidemiology (3)</td>
</tr>
<tr>
<td>ERHS 642</td>
<td>Applied Logistic Regression (3)</td>
</tr>
<tr>
<td>ERHS 658</td>
<td>Environmental and Occupational Epidemiology (3)</td>
</tr>
<tr>
<td>ERHS 693A</td>
<td>Research Seminar: Epidemiology (2)</td>
</tr>
<tr>
<td>STAT Course</td>
<td>to be determined in consultation with advisor</td>
</tr>
</tbody>
</table>

One course from TWO of the following areas; 6 or more credits:

Environmental / Occupational Health

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERHS 520</td>
<td>Environmental & Occupational Health Issues (3)</td>
</tr>
<tr>
<td>ERHS 526</td>
<td>Industrial Hygiene (3)</td>
</tr>
<tr>
<td>ERHS 536</td>
<td>Advanced Occupational Health (3)</td>
</tr>
<tr>
<td>ERHS 540</td>
<td>Principles of Ergonomics (3)</td>
</tr>
</tbody>
</table>

Toxicology / Cancer Biology*

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERHS 502</td>
<td>Fundamentals of Toxicology (3)</td>
</tr>
<tr>
<td>ERHS 510</td>
<td>Cancer Biology (3)</td>
</tr>
<tr>
<td>ERHS 611</td>
<td>Cancer Genetics (2)</td>
</tr>
<tr>
<td>ERHS 733</td>
<td>Environmental Carcinogenesis (3)</td>
</tr>
</tbody>
</table>

Microbiology*

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIP 530</td>
<td>Advanced Molecular Virology (3)</td>
</tr>
<tr>
<td>MIP 651</td>
<td>Immunobiology (3)</td>
</tr>
<tr>
<td>MIP 760</td>
<td>Mechanisms of Bacterial Pathogenesis (3)</td>
</tr>
</tbody>
</table>

Statistics*

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 511</td>
<td>Design and Data Analysis for Researchers I (4)</td>
</tr>
<tr>
<td>STAT 512</td>
<td>Design and Data Analysis for Researchers II (4)</td>
</tr>
<tr>
<td>STAT 523</td>
<td>Quantitative Spatial Analysis (3)</td>
</tr>
<tr>
<td>STAT 525</td>
<td>Analysis of Time Series I (3)</td>
</tr>
<tr>
<td>STAT 526</td>
<td>Analysis of Time Series II (3)</td>
</tr>
<tr>
<td>STAT 547</td>
<td>Statistics for Environmental Monitoring (3)</td>
</tr>
<tr>
<td>STAT 560</td>
<td>Applied Multivariate Analysis (3)</td>
</tr>
</tbody>
</table>

Epidemiology Related Courses (12 credits)

Other courses in epidemiology or related areas, as approved by graduate advisory committee

Out of Department Requirement (6 or more credits)

Graduate level course work approved by graduate advisory committee

Research (credits determined by graduate advisory committee; minimum of 27 credits)

ERHS799 Dissertation
*Non-ERHS courses cannot be used to meet both required and out-of-department requirements.

Epidemiology and Epidemiology Related Courses

In addition to the following courses, any course listed under the M.S. or Ph.D. degree programs for the specialization in Epidemiology can be used to satisfy the credit requirement for “Epidemiology Related Courses”.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATS 555</td>
<td>Air Pollution (3)</td>
<td></td>
</tr>
<tr>
<td>ATS 560</td>
<td>Air Pollution Measurement (2)</td>
<td></td>
</tr>
<tr>
<td>ATS 621</td>
<td>Atmospheric Chemistry (2)</td>
<td></td>
</tr>
<tr>
<td>BC 463</td>
<td>Molecular Genetics (3)</td>
<td></td>
</tr>
<tr>
<td>BMS 410</td>
<td>Physiological Responses to the Environment (3)</td>
<td></td>
</tr>
<tr>
<td>BMS 420</td>
<td>Cardiopulmonary Physiology (3)</td>
<td></td>
</tr>
<tr>
<td>BMS 430</td>
<td>Endocrinology (3)</td>
<td></td>
</tr>
<tr>
<td>BMS 460</td>
<td>Essentials of Pathophysiology (3)</td>
<td></td>
</tr>
<tr>
<td>BMS 500</td>
<td>Mammalian Physiology I (4)</td>
<td></td>
</tr>
<tr>
<td>BMS 501</td>
<td>Mammalian Physiology II (4)</td>
<td></td>
</tr>
<tr>
<td>BMS 620</td>
<td>Cardiovascular Physiology (3)</td>
<td></td>
</tr>
<tr>
<td>BMS 640</td>
<td>Reproductive Physiology and Endocrinology (5)</td>
<td></td>
</tr>
<tr>
<td>BSPM 508</td>
<td>Environmental Fate of Pesticides (3)</td>
<td></td>
</tr>
<tr>
<td>ERHS 430</td>
<td>Human Disease and the Environment (3)</td>
<td></td>
</tr>
<tr>
<td>ERHS/MIP 533</td>
<td>Epidemiology of Infectious Disease/Zoonoses (3)</td>
<td></td>
</tr>
<tr>
<td>ERHS 550</td>
<td>Principles of Radiation Biology (5)</td>
<td></td>
</tr>
<tr>
<td>ERHS 561</td>
<td>Radiation Public Health (2)</td>
<td></td>
</tr>
<tr>
<td>ERHS 563</td>
<td>Environmental Contaminant Modeling I (2)</td>
<td></td>
</tr>
<tr>
<td>ERHS 648</td>
<td>Environmental Health Risk Assessment (3)</td>
<td></td>
</tr>
<tr>
<td>ERHS/VS 662</td>
<td>Applied Research – Planning/Design/Analysis (3)</td>
<td></td>
</tr>
<tr>
<td>FSHN 640</td>
<td>Selected Topics in Nutritional Epidemiology (2)</td>
<td></td>
</tr>
<tr>
<td>HES 645</td>
<td>Epidemiology of Health and Physical Activity (3)</td>
<td></td>
</tr>
<tr>
<td>MIP/BZ 462</td>
<td>Parasitology and Vector Biology (5)</td>
<td></td>
</tr>
<tr>
<td>MIP 555</td>
<td>Principles and Mechanisms of Disease (3)</td>
<td></td>
</tr>
<tr>
<td>MIP 563</td>
<td>Biology of Disease Vectors (3)</td>
<td></td>
</tr>
<tr>
<td>MIP/BSPM 576</td>
<td>Bioinformatics</td>
<td></td>
</tr>
<tr>
<td>MIP/BZ 578</td>
<td>Genetics of Natural Populations (3)</td>
<td></td>
</tr>
<tr>
<td>MIP 580</td>
<td>Disease Vectors in the Field and Laboratory (3)</td>
<td></td>
</tr>
<tr>
<td>MIP 624</td>
<td>Advanced Topics in Microbial Ecology (2)</td>
<td></td>
</tr>
<tr>
<td>MIP 636</td>
<td>Mechanism of Viral Infection and Disease (4)</td>
<td></td>
</tr>
<tr>
<td>NR 421</td>
<td>Natural Resource Sampling (3)</td>
<td></td>
</tr>
<tr>
<td>NR 505</td>
<td>Concepts in GIS (4)</td>
<td></td>
</tr>
<tr>
<td>NR 512</td>
<td>Spatial Statistical Modeling-Natural Resources (3)</td>
<td></td>
</tr>
<tr>
<td>PSY 515</td>
<td>Women’s Health (3)</td>
<td></td>
</tr>
<tr>
<td>PSY/IE 517</td>
<td>Perspectives in Global Health (3)</td>
<td></td>
</tr>
<tr>
<td>VM 714</td>
<td>Veterinary Preventive Medicine (4)*</td>
<td></td>
</tr>
<tr>
<td>VS 581</td>
<td>Advanced Veterinary Epidemiologic Research</td>
<td></td>
</tr>
</tbody>
</table>
INDUSTRIAL HYGIENE SPECIALIZATION

M.S. Degree Programs
M.S. Plan A program requires a minimum of 30 semester credits with a thesis.
M.S. Plan B program requires a minimum of 40 semester credits with a professional paper and internship OR one year of professional experience in occupational OR environmental health-related areas. Most students take a total of 40 – 50 credits.

Required Core Courses
Plan A - minimum of 20 credits; Plan B - minimum of 24 credits

ERHS 520 Environmental & Occupational Health Issues (3)
ERHS 526 Industrial Hygiene (3)
ERHS 532 Epidemiologic Methods (3)
ERHS 693B Research Seminar -Industrial Hygiene (1-4)
or ERHS679 Occupational and Environmental Health Interdisciplinary Symposium (1-4) required for MAP ERC funded Trainees
ERHS 695 Independent Study (4) (Plan B)
ERHS 699 Thesis (4-6) (Plan A)
STATISTICS One graduate level course (3)
PSY 596D Group Study—Industrial/Organizational Psych - Professions Protecting/Promoting Worker Health – Required for 1st year MAP ERC funded Trainees only.

Out of department elective approved by student’s committee (3)
Two additional courses approved by student’s committee (Plan B)

Elective Courses
Plan A - minimum of 9 credits; Plan B - minimum of 12 credits)

ERHS 502 Fundamentals of Toxicology (3) or EHOH6616 Environmental and Occupational Toxicology (CSPH UCD) (3)
ERHS 527 Industrial Hygiene Laboratory (1)
ERHS 528 Occupational Safety (3)
ERHS 530 Radiological Physics and Dosimetry I (3)
ERHS 536 Advanced Occupational Health (3)
ERHS 540 Principles of Ergonomics (3)
ERHS 541 Ergonomics in Product and Process Design (3)
ERHS 547 Equipment & Instrumentation (3)
ERHS 549 Environmental Health Risk Assessment (3)
ERHS 550 Principles of Radiation Biology (3)
ERHS 636 Industrial Hygiene Control Methods (3)
ERHS 637 Environmental Safety & Health Management (3)
ERHS 656 Occupational Noise Control (3)
ERHS 698 Research (1-6)
ERHS 726 Aerosols and Occupational Health (3)
PSY 792 Occupational Health Psychology (3)

Responsible Conduct Research Training:

RCR Online Training: All master’s students will be required to take the Responsible Conduct Research online training. It is an overview of the core competencies involved in research and can be found at: http://rcr.colostate.edu/training.html. There are nine learning modules followed by a mastery quiz, and takes about an hour to complete.
OEHS Thesis Guidelines

The OEHS adopted the following Master’s Thesis format to facilitate a concise, clear, well-written document that is more easily transformed into a publishable manuscript. In addition, all master’s degree students should consult the CSU Graduate School’s Thesis and Dissertation Formatting Guide for thesis development. The thesis should contain the following sections:

1. Title page, copyright page, abstract, and table of contents per the Graduate School’s Thesis and Dissertation Formatting Guide

2. Introduction. This section should include a presentation of referenced literature necessary to support the rationale, purpose, and understanding of the study. Do not provide an exhaustive, historical review of the literature.

3. Experimental Section. This section should concisely and clearly explain the methods and materials used so that others can repeat your work. If an explanation of detailed operating procedures or processes is required to explain the method, provide those details in an Appendix at the end of the thesis.

4. Results. The results should be presented, and as necessary, with tables, illustrations, and/or graphs. The style and format of tables, illustrations, and graphs should adhere to the Graduate School Thesis and Dissertation Formatting Guide. Consideration should also be given to the format suggested by the journal to which the manuscript will be submitted.

5. Discussion. This section should address whether or not the study results supported the hypothesis and why. A comparison of the study results to other published studies, supporting or negating, should be presented as well as how the results contribute to the body of knowledge. The student’s interpretation/opinion regarding the results can be presented in this section. Last, a detailed presentation of the study strengths and limitations should be included.

6. Conclusions and Future Work. Concisely state the conclusions based on the study results/discussion. Identify future work that should be accomplished to further address the area of study.

8. References. The citation and bibliography format should follow the format suggested by the journal to which the manuscript will be submitted, provided that this format also adheres to the Graduate School Thesis and Dissertation Formatting Guide. When in doubt, always follow the Graduate School Thesis and Dissertation Formatting Guide.

9. Appendices. Include any appendices necessary to detail methods/materials used (e.g., procedures and questionnaires).
INDUSTRIAL HYGIENE SPECIALIZATION

Ph.D. Degree Program
The Ph.D. program requires a minimum of 72 semester credits plus dissertation.

Required Core Courses (minimum of 29 credits)

- ERHS 520 Environmental & Occupational Health Issues (3)
- ERHS 526 Industrial Hygiene (3)
- ERHS 532 Epidemiologic Methods (3)
- ERHS 693B Research Seminar -Industrial Hygiene (1-4)
 or ERHS 679 Occupational and Environmental Health Interdisciplinary Seminar (1-4)
 required for MAP ERC funded Trainees
- ERHS 799 Dissertation (15-20)

STATISTICS
- One graduate level course (with approval of advisor) (3)

PSY 596D Group Study—Industrial/Organizational Psych - Professions
- Protecting/Promoting Worker Health – Required for 1st year MAP ERC funded Trainees only.

Out of Department Courses (minimum of 6 credits in 2 courses) must be approved by committee.

Elective Courses (minimum of 15 credits)

- ERHS 502 Fundamentals of Toxicology (3)
- ERHS 527 Industrial Hygiene Laboratory (1)
- ERHS 528 Occupational Safety (3)
- ERHS 530 Radiological Physics and Dosimetry (3)
- ERHS 536 Advanced Occupational Health (3)
- ERHS 540 Principles of Ergonomics (3)
- ERHS 541 Ergonomics in Product and Process Design (3)
- ERHS 547 Equipment & Instrumentation (3)
- ERHS 549 Environmental Health Risk Assessment (3)
- ERHS 550 Principles of Radiation Biology (3)
- ERHS 601 Metabolism & Disposition of Toxic Agents (3)
- ERHS 636 Industrial Hygiene Control Methods (3)
- ERHS 637 Environmental Safety Health Management (3)
- ERHS 648 Environmental Health Risk Assessment (3)
- ERHS 656 Occupational Noise Control (3)
- ERHS 658 Environmental & Occupational Epidemiology (3)
- ERHS 726 Aerosols & Occupational Health (3)
- ERHS 784 Supervised College Teaching (3)
- PSY 792 Occupational Health Psychology (3)

Responsible Conduct Research Training:

All PhD students will be required to take the Responsible Conduct Research training (RCR). There is one online course and one eight week course that will be required:
RCR Online Training: Is an overview of the core competencies involved in research and can be found at: http://rcr.colostate.edu/training.html. There are nine learning modules followed by a mastery quiz. The online training takes about one hour to complete.

GRAD 544: Offered fall and spring semesters only. It is a one-credit, eight-week course that will cover the mandated areas of RCR training for the physical sciences, biomedical science and humanities. For a complete list of all RCR courses offered at CSU, please refer to: http://rcr.colostate.edu/courses.html. Students can take GRAD 544 or one of the listed courses from the above link to meet the eight week course requirement.
ERGONOMICS SPECIALIZATION

M.S. Degree

The M.S. program with a focus in Ergonomics requires a minimum of 32 semester credits. Additional courses may be required depending on previous coursework.

EOH* Core Courses (10 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERHS 520</td>
<td>Environmental & Occupational Health Issues</td>
<td>3</td>
</tr>
<tr>
<td>ERHS 532</td>
<td>Epidemiologic Methods</td>
<td>3</td>
</tr>
<tr>
<td>ERHS 679</td>
<td>Occupational and Environmental Health Interdisciplinary Symposium</td>
<td>1</td>
</tr>
</tbody>
</table>

STATISTICS

One graduate level course (with approval of advisor) (3)

Ergonomics Core Courses (9 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERHS 528</td>
<td>Occupational Safety</td>
<td>3</td>
</tr>
<tr>
<td>ERHS 540</td>
<td>Principles of Ergonomics</td>
<td>3</td>
</tr>
<tr>
<td>ERHS 541</td>
<td>Ergonomics in Product & Process Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Additional Course Work

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERHS 687</td>
<td>Practicum / Internship, minimum</td>
<td>3</td>
</tr>
<tr>
<td>ERHS 699</td>
<td>Thesis**, minimum</td>
<td>4</td>
</tr>
<tr>
<td>Dept. Electives (ERHS)</td>
<td>minimum</td>
<td>3</td>
</tr>
<tr>
<td>Out of dept. course</td>
<td>minimum</td>
<td>3</td>
</tr>
<tr>
<td>PSY 596D</td>
<td>Group Study—Industrial/Organizational Psych - Professions Protecting/Promoting Worker Health – Required for 1st year MAP ERC funded Trainees only.</td>
<td></td>
</tr>
</tbody>
</table>

* EOH = Environmental and Occupational Health
**Thesis required
***Thesis Guidelines (see below)

Responsible Conduct Research Training:

RCR Online Training: All master’s students will be required to take the Responsible Conduct Research online training. It is an overview of the core competencies involved in research and can be found at: http://rcr.colostate.edu/training.html. There are nine learning modules followed by a mastery quiz, and takes about an hour to complete.
The OEHS adopted the following Master’s Thesis format to facilitate a concise, clear, well-written document that is more easily transformed into a publishable manuscript. In addition, all master’s degree students should consult the CSU Graduate School’s Thesis and Dissertation Formatting Guide for thesis development. The thesis should contain the following sections:

1. Title page, copyright page, abstract, and table of contents per the Graduate School’s Thesis and Dissertation Formatting Guide

2. Introduction. This section should include a presentation of referenced literature necessary to support the rationale, purpose, and understanding of the study. Do not provide an exhaustive, historical review of the literature.

3. Experimental Section. This section should concisely and clearly explain the methods and materials used so that others can repeat your work. If an explanation of detailed operating procedures or processes is required to explain the method, provide those details in an Appendix at the end of the thesis.

4. Results. The results should be presented, and as necessary, with tables, illustrations, and/or graphs. The style and format of tables, illustrations, and graphs should adhere to the Graduate School Thesis and Dissertation Formatting Guide. Consideration should also be given to the format suggested by the journal to which the manuscript will be submitted.

5. Discussion. This section should address whether or not the study results supported the hypothesis and why. A comparison of the study results to other published studies, supporting or negating, should be presented as well as how the results contribute to the body of knowledge. The student’s interpretation/opinion regarding the results can be presented in this section. Last, a detailed presentation of the study strengths and limitations should be included.

6. Conclusions and Future Work. Concisely state the conclusions based on the study results/discussion. Identify future work that should be accomplished to further address the area of study.

8. References. The citation and bibliography format should follow the format suggested by the journal to which the manuscript will be submitted, provided that this format also adheres to the Graduate School Thesis and Dissertation Formatting Guide. When in doubt, always follow the Graduate School Thesis and Dissertation Formatting Guide.

9. Appendices. Include any appendices necessary to detail methods/materials used (e.g., procedures and questionnaires).
ERGONOMICS SPECIALIZATION

Ph.D. Degree Program
The Ph.D. program with a focus in Ergonomics requires a minimum of 72 semester credits with a dissertation.

EOH* Core Courses (10 credits)
ERHS 520 Environmental & Occupational Health Issues (3)
ERHS 532 Epidemiologic Methods (3)
ERHS 679 Occupational and Environmental Health Interdisciplinary Symposium (1)
STATISTICS One graduate level course (3)

Ergonomics Core Courses (21 credits)
ERHS 528 Occupational Safety (3)
ERHS 536 Advanced Occupational Health (3)
ERHS 540 Principles of Ergonomics (3)
ERHS 541 Ergonomics in Product & Process Design (3)
ERHS 642 Applied Logistic Regression (3)
ERHS 658 Environmental & Occupational Epidemiology (3)
ERHS 687 Practicum / Internship (Ergonomic Field Work) (3)
ERHS 784 Supervised College Teaching (3)
STATISTICS One graduate level course (with approval of advisor) (3)

Additional Course Work
ERHS 799** Dissertation minimum (15)
Dept. elective (ERHS) course, minimum (3)
Out of dept. courses, minimum (6)
PSY 596D Group Study—Industrial/Organizational Psych - Professions
Protecting/Promoting Worker Health – Required for 1st year MAP ERC funded Trainees only (1).

*EOH = Environmental and Occupational Health
A Dissertation will be required

Responsible Conduct Research Training:

All PhD students will be required to take the Responsible Conduct Research training (RCR). There is one online course and one eight week course that will be required:

RCR Online Training: Is an overview of the core competencies involved in research and can be found at: http://rcr.colostate.edu/training.html. There are nine learning modules followed by a mastery quiz. The online training takes about one hour to complete.

GRAD 544: Offered fall and spring semesters only. It is a one-credit, eight-week course that will cover the mandated areas of RCR training for the physical sciences, biomedical science and humanities. For a complete list of all RCR courses offered at CSU, please refer to: http://rcr.colostate.edu/courses.html. Students can take GRAD 544 or one of the listed courses from the above link to meet the eight week course requirement.
TOXICOLOGY DEGREE

Master of Science in Toxicology Degree Program

Plan A Masters programs have a minimum of 30 semester credits with a thesis.
Plan B Masters programs have a minimum of 32 semester credits with a comprehensive examination.

Objectives for graduates
- Obtain a broad, fundamental knowledge of the field of Toxicology
- Develop professional communication skills and expertise
- Develop technical skills and practical experience in solving Toxicological problems

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERHS 502P</td>
<td>Fundamentals of Toxicology</td>
<td>(3)</td>
</tr>
<tr>
<td>ERHS 601P</td>
<td>Metabolism and Disposition of Toxic Agents</td>
<td>(3)</td>
</tr>
<tr>
<td>ERHS 602P</td>
<td>Toxicological Mechanisms</td>
<td>(3)</td>
</tr>
<tr>
<td>ERHS 603P</td>
<td>Toxicological Pathology</td>
<td>(3)</td>
</tr>
</tbody>
</table>

TOTAL 12

Departmental Courses

Category A Select at least one of the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERHS 520P</td>
<td>Environmental and Occupational Health Issues</td>
<td>(3)</td>
</tr>
<tr>
<td>ERHS 566P</td>
<td>Forensic Toxicology</td>
<td>(3)</td>
</tr>
<tr>
<td>ERHS 568P</td>
<td>Pharmaceutical and Regulatory Toxicology</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Group B Select at least two of the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERHS 448P</td>
<td>Environmental Contaminants: Exposure and Fate</td>
<td>(3)</td>
</tr>
<tr>
<td>ERHS 547P</td>
<td>Equipment and Instrumentation</td>
<td>(3)</td>
</tr>
<tr>
<td>ERHS 549P</td>
<td>Environmental Health Risk Assessment</td>
<td>(3)</td>
</tr>
<tr>
<td>ERHS 567P</td>
<td>Cellular and Molecular Toxicology Techniques</td>
<td>(3)</td>
</tr>
<tr>
<td>ERHS 733P</td>
<td>Environmental Carcinogenesis</td>
<td>(3)</td>
</tr>
</tbody>
</table>

TOTAL 9

Seminar Requirement\(^1\) ...1
Out of Department Requirement\(^2,4,5\) ..3
Electives\(^2,4,5\)

Plan A ...0-2
Plan B ...7
ERHS 699Thesis (Plan A Only)3-5

Program Total: **Plan A:** minimum 30 credits\(^5\), **Plan B:** minimum 32 credits\(^5\)

\(^p\) This course has at least one prerequisite. Check the Courses of Instruction section of the catalog at http://catalog.colostate.edu/ to see the course prerequisites.

\(^1\) Departmental courses not used to fulfill the category A requirement may be counted toward the category B requirement.

\(^2\) A maximum of 6 credits below 500-level may be counted toward the program total.

\(^3\) Select graduate seminar course(s) with approval by the advisor and graduate committee.

\(^4\) Eligible courses determined by advisor and graduate committee.

\(^5\) No more than a total of 6 credits of Independent Study, Group Study, Research, and Internship course numbers may be included in the program.
TOXICOLOGY DEGREE

Ph.D. in Toxicology Degree Program

Ph.D. programs have a minimum of 72 credits. Up to 30 credits from a Master's degree program may be transferred to the Ph.D. program.

Objectives for graduates
- Obtain a broad, fundamental knowledge of the field of Toxicology
- Develop professional communication skills and expertise
- Develop technical skills and practical experience in solving Toxicological problems

Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERHS 502</td>
<td>Fundamentals of Toxicology</td>
<td>3</td>
</tr>
<tr>
<td>ERHS 566</td>
<td>Forensic Toxicology</td>
<td>3</td>
</tr>
<tr>
<td>ERHS 601</td>
<td>Metabolism and Disposition of Toxic Agents</td>
<td>3</td>
</tr>
<tr>
<td>ERHS 602</td>
<td>Toxicological Mechanisms</td>
<td>3</td>
</tr>
<tr>
<td>ERHS 603</td>
<td>Toxicological Pathology</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL 15 credits

Department Electives

1. Select from the list of departmental courses as approved by adviser and graduate committee.
2. A maximum of 6 credits below 500-level may be counted toward the program total.
3. A minimum of 2 credits of graduate seminar course(s) determined by the advisor and graduate committee.
4. Select enough dissertation credits to bring the program total to a minimum of 72 credits as approved by the advisor and graduate committee.

Program Total = 72 credits

This course has at least one prerequisite. Check the Courses of Instruction section of the catalog at http://catalog.colostate.edu/ to see the course prerequisites.
HEALTH PHYSICS SPECIALIZATION

M.S. Degree Program

Required Courses (23 credits)
- ERHS 530 Radiological Physics and Dosimetry I (3)
- ERHS 531 Nuclear Instruments and Measurements (2)
- ERHS 550 Principles of Radiation Biology (5)
 OR
- ERHS 450 Introduction to Radiation Biology (3)
(Note: ERHS 550 or ERHS 450 may be taken to fulfill Radiobiology requirement)
- ERHS 561 Radiation Public Health (2)
- ERHS 630 Radiological Physics and Dosimetry II (3)
- ERHS 632 Techniques in Radiation Dosimetry (1)
- ERHS 665 Radiochemistry (3)
- ERHS 693D Research Seminar – Health Physics
- ERHS 786 Practicum (3)

Alternative Required Electives (5-7 credits)
- Statistics
 - STAT 511, or 547 or Other statistics class as approved by advisor (GS-6) (4)
- Environmental Health Physics
 - ERHS 563 Environmental Contaminant Modeling I (2)
 OR
 - ERHS 570 Radioecology (2)

General Electives (at least 3 credits from the following)
- ERHS 446 Environmental Toxicology (3)
- ERHS 502 Fundamentals of Toxicology (3)
- ERHS 515 Non-Ionizing Radiation Safety (3)
- ERHS 520 Advanced Environmental Health (3)
- ERHS 526 Industrial Hygiene (3)
- ERHS 527 Industrial Hygiene – Lab (1)
- ERHS 712 Physics of Diagnostic Imaging
- ERHS 714 Radiotherapy Physics
- ERHS 726 Aerosols and Occupational Health (3)
- STAT 512 Design and Data Analysis for Researchers II (4)
- STAT 547 Statistics for Environmental Monitoring (3)

Either of the following may also be used if not selected above:
- ERHS 563 Environmental Contaminant Modeling (2)
- ERHS 570 Radioecology (2)

Additional Credit Requirement for Plan A
- ERHS 699 Thesis (3)
- ERHS 679 Occupational and Environmental Health Interdisciplinary Symposium (1 credit) Required for MAP ERC funded Trainees

Additional Credit Requirement for Plan B: 36 total credits
HEALTH PHYSICS SPECIALIZATION

Ph.D. Degree Program

Required Courses (72 credits minimum)
All M.S. Courses listed above
ERHS 799 Dissertation

Electives
From electives listed above

Additional Credit Requirements:
ERHS 679 Occupational and Environmental Health Interdisciplinary Symposium (1 credit) Required for MAP ERC Trainees

PSY 596D Group Study—Industrial/Organizational Psych - Professions Protecting/Promoting Worker Health (1-4 credit) – Required for MAP ERC 1st year Trainees.

Notes: Electives are suggested courses but others may be used upon approval by the graduate student’s committee.
RADIATION CANCER BIOLOGY AND ONCOLOGY

M.S. Degree Program

Required Courses (30 Credits Minimum)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 401</td>
<td>Comprehensive Biochemistry I</td>
<td>3</td>
</tr>
<tr>
<td>BC 403</td>
<td>Comprehensive Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>ERHS 530</td>
<td>Radiological Physics and Dosimetry I</td>
<td>3</td>
</tr>
<tr>
<td>ERHS 550</td>
<td>Principles of Radiation Biology</td>
<td>5</td>
</tr>
<tr>
<td>ERHS 699</td>
<td>Thesis</td>
<td>Var</td>
</tr>
<tr>
<td>ERHS 770</td>
<td>Radiation Biology Basic to Tumor Therapy</td>
<td>1</td>
</tr>
<tr>
<td>Statistics</td>
<td>(several options)</td>
<td>(3)</td>
</tr>
<tr>
<td>Electives</td>
<td>From electives list below</td>
<td>(Var)</td>
</tr>
</tbody>
</table>

Ph.D. Degree Program

Required Courses (72 Credits Minimum)

All M.S. Courses listed above

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 563</td>
<td>Molecular Genetics</td>
<td>4</td>
</tr>
<tr>
<td>BC 565</td>
<td>Molecular Regulation of Cell Function</td>
<td>4</td>
</tr>
<tr>
<td>ERHS 751</td>
<td>Advanced Radiation Biology I</td>
<td>3</td>
</tr>
<tr>
<td>ERHS 753</td>
<td>Advanced Radiation Biology II</td>
<td>3</td>
</tr>
<tr>
<td>ERHS 770</td>
<td>Radiation Biology Basic to Tumor Therapy</td>
<td>Var</td>
</tr>
<tr>
<td>ERHS 799</td>
<td>Dissertation</td>
<td>Var</td>
</tr>
<tr>
<td>Electives</td>
<td>From electives list below</td>
<td>(Var)</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERHS 510</td>
<td>Cancer Biology</td>
<td>3</td>
</tr>
<tr>
<td>ERHS 611</td>
<td>Cancer Genetics</td>
<td>2</td>
</tr>
<tr>
<td>ERHS 630</td>
<td>Radiological Physics and Dosimetry II</td>
<td>2</td>
</tr>
<tr>
<td>ERHS 733</td>
<td>Environmental Carcinogenesis</td>
<td>3</td>
</tr>
<tr>
<td>ERHS 712</td>
<td>Physics of Diagnostic Imaging</td>
<td>3</td>
</tr>
<tr>
<td>VS 780</td>
<td>Cancer Biology Clinical Practicum</td>
<td>2</td>
</tr>
</tbody>
</table>

Notes: Electives are suggested courses but others may be used upon approval by the graduate student's committee.
Radiology Residency Program

Required Courses (20 credits total)

- **ERHS 550** Principles of Radiation Biology (5) (offered spring only)
- **ERHS 701** Advanced Diagnostic Imaging Modalities (4) (offered odd years, spring only)
- **ERHS 711** Advanced Radiographic Interpretation (Variable 1-4) (offered odd years, spring only)
- **ERHS 712** Physics of Diagnostic Imaging (3) (offered odd years, fall only)
- **STAT 307** Introduction to Biostatistics or equivalent (3) (only needed if no other statistics course has been taken)
- **VS 792** Seminar/Graduate (1)

Elective Courses (total 16 credits in any combination)

- **ERHS 721** Radiation Oncology (1-3)
- **ERHS 695 & 795** Independent Study (Var)
- **ERHS 770** Radiation Biology Basic to Tumor Therapy (1-3)
- **VS 660** Neurology and Neurosurgery (3) (offered in spring semester)
- **VS 701-704** Postgraduate Medicine I-IV (Var) (requires residency director approval)

Students in this program are considered “Plan B” and a thesis is not required. A final oral exam is required and submission of two manuscripts for publication (see syllabus for more detailed information on all requirements):

http://www.cvmbs.colostate.edu/ns/_docs/departments/erhs/vdi_residency_syllabus.pdf
Integrated Degree Program (IDP) MASTERS DEGREE PROGRAM IN HEALTH PHYSICS

Note: there are no changes in the undergraduate program during the first two years.

Year 1 – Fall Semester
LIFE 102 Attributes of Living Systems (4)
CHEM 111 General Chemistry I (4)
CHEM 112 General Chemistry I Lab (1)
CO 150 College Composition (3)
Core Arts and Humanities (3)

Year 1 – Spring Semester
CHEM 113 General Chemistry II (3)
CHEM 114 General Chemistry II Lab (1)
ERHS 220 Environmental Health (2)
MATH 155 Calculus for the Biological Sciences (4)

Year 2 – Fall Semester
MATH 126 Analytical Trigonometry (1)
PH 141 Physics for Scientists and Engineers (5)
ERHS 230 Field Methods (3)
CHEM 341 Organic Chemistry I (3)
Core Social/Behavioral Sciences (3)

Year 2 – Spring Semester
BMS 300 Principles of Human Physiology (4)
CHEM 343 Organic Chemistry II (3)
CHEM 344 Organic Chemistry II Lab (2)
PH 142 Physics for Scientists and Engineers II (5)

During their second year, students with strong performance in calculus and physics courses would be asked about their interest in the IDP program. Those students who express a desire to be considered for early admission to Graduate School would be counseled to take the following sequence of courses.

Year 3 – Fall Semester
MIP 300 General Microbiology (3)
MIP 302 General Microbiology Lab (2)
ERHS 320 Environmental Health Water and Food Safety (3)
ERHS 350 Industrial Hygiene & Air (3)
Core Additional Communication (3)

Year 3 – Spring Semester
MATH 255 Calculus for Biological Scientists II (4)
ERHS 332 Principles of Epidemiology (3)
ERHS 479 Environmental Health Practice (1)
Core Arts/Humanities (3)
 Historical Perspectives (3)
 Electives (2)

Those students who perform well and maintain their interest in the third year would be counseled to apply to the IDP program. Students, who for whatever reason, lose their interest have not lost any progress towards their EVHL-BS degree. They may return to the standard B. S. plan, and their credits in the physics and math courses applied towards the EVHL-BS degree.
Students who are admitted to the Graduate School begin taking graduate level courses in their fourth year.

Year 4 – Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZ 310</td>
<td>Cell Biology (4)</td>
<td></td>
</tr>
<tr>
<td>ERHS 446</td>
<td>Environmental Toxicology (3)</td>
<td></td>
</tr>
<tr>
<td>ERHS 530</td>
<td>Radiation Physics and Dosimetry I (3)</td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td>Global/Culture Awareness (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electives (2)</td>
<td></td>
</tr>
</tbody>
</table>

Year 4 – Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 351</td>
<td>Principles of Biochemistry (4)</td>
<td></td>
</tr>
<tr>
<td>ERHS 487 V</td>
<td>Internship-Environmental Health (4-7)</td>
<td></td>
</tr>
<tr>
<td>ERHS 531</td>
<td>Nuclear Instruments and Measurements (2)</td>
<td></td>
</tr>
<tr>
<td>ERHS 550</td>
<td>Principles of Radiation Biology (5)</td>
<td></td>
</tr>
<tr>
<td>ERHS 630</td>
<td>Radiation Physics and Dosimetry II (3)</td>
<td></td>
</tr>
</tbody>
</table>

Students receive guidance in selecting 1) an internship experience that will include both experiences in environmental health and radiation health or 2) separate internship and practicum experiences.

Year 5 – Fall Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERHS 561</td>
<td>Radiation Public Health (2)</td>
<td></td>
</tr>
<tr>
<td>ERHS 632</td>
<td>Techniques in Radiation Dosimetry (2)</td>
<td></td>
</tr>
<tr>
<td>ERHS 786</td>
<td>Practicum (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electives (3)</td>
<td></td>
</tr>
</tbody>
</table>

Students will receive credit for their practicum experiences from the previous summer in this fall semester by preparing documents and reports describing the radiation related aspects of their summer experience.

Year 5 – Spring Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATISTICS</td>
<td>To be determined in consultation with advisor</td>
<td></td>
</tr>
<tr>
<td>ERHS 410</td>
<td>Environmental Health, Waste Management (3)</td>
<td></td>
</tr>
<tr>
<td>ERHS 563</td>
<td>Environmental Contaminant Modeling (2)</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERHS 570</td>
<td>Radioecology (2)</td>
<td></td>
</tr>
<tr>
<td>ERHS 665</td>
<td>Radiochemistry (3)</td>
<td></td>
</tr>
<tr>
<td>ERHS 693D</td>
<td>Seminar (1)</td>
<td></td>
</tr>
</tbody>
</table>

Students will receive their B. S. at the end of their fifth year upon completion of all program requirements. They will also receive their M. S. degree at the end of their fifth year upon completion of a professional paper, presentation of a seminar, and a successful oral final examination. The M. S. degree will, because of time limitations, be a Plan B degree. However, those students who wish to perform independent research, defend a thesis, and receive a Plan A M. S. may do so but will likely need to spend additional time at CSU.
Admissions Information

The following items are required to be considered for admission into the graduate programs in the Department of Environmental and Radiological Health Sciences.

1. A bachelor’s degree from an accredited institution
2. An overall grade point average of 3.0 or higher
3. GRE scores in the general examination (verbal, quantitative, and analytical writing) within 5 years. Scores from the Medical College Admission Test (MCAT) may be submitted in lieu of the GRE.
4. One official transcript from each prior institution attended
5. Three letters of recommendation
6. Statement of academic interest and career plans
7. Resume or Curriculum Vitae
8. TOEFL or IELTS scores within last 3 years (international students only)

In addition to the general admission requirements described above, each ERHS Section has specific requirements for admission. See Admission Requirements under the specific section of interest and the department website at:
http://www.cvmbs.colostate.edu/ns/departments/erhs/index.aspx

ERHS Section Requirements for Admission

Radiation Cancer Biology and Oncology

Prior to applying to either the MS or PhD programs, students are strongly encouraged to contact a faculty member in Radiation Cancer Biology and Oncology to identify shared research interests and determine the availability of financial support.

Epidemiology

The Epidemiology section considers applications once yearly with a deadline of February 1. Applications must be complete in order to be considered. In special circumstances, applications for the spring semester will be considered with a deadline of October 1, but this practice is strongly discouraged due to the sequence of course offerings.

Required Courses

- One year of biology with laboratory
- One year of general chemistry with laboratory
- Mathematics meeting all calculus prerequisites

Recommended courses

- Organic chemistry with laboratory
- Statistics or biostatistics
- Anatomy/physiology
- Computing and data management
Occupational and Environmental Health

Admission Criteria and Process

Applications will be considered for the specified term of admission so long as the specified term is within 12 months of the date that the application is submitted. There are typically two admission points within a calendar year (beginning in the spring semester or in the fall semester), and the OEH Section will admit students up to the capacity determined by the faculty members based on student funding, available mentors in the student’s disciplinary area and other factors determined by the faculty members to support a quality graduate education program. Application deadlines are posted on the program of study web pages.

Admission to the OEH Section is based upon many factors including, but not limited to: academic strengths, undergraduate preparation, work experience, research experience, and extracurricular activities. Applications are most commonly accepted from individuals with an earned baccalaureate degree in engineering, biological, physical, behavioral, or health sciences. Admitted students usually have coursework in college-level mathematics, biology, chemistry, and physics. Any additional coursework in anatomy, physiology, advanced chemistry (bio, physical, organic, inorganic, etc.), statistics, research methods, and advanced mathematics is also favorable. Each candidate is evaluated on their individual merits and qualities. Exceptions may be granted to applicants who demonstrate particular professional promise. Such exceptions may be admitted with an individually documented program of study to compensate for any deficiencies.

Upon initial receipt of an application, the Graduate Student Coordinator will examine the file and note in the record if the following requirements are documented before the file is circulated for review by the disciplinary faculty members:

- Minimum GPA of 3.0/4.0 in all prior college-level work for regular admission
- Official scores from The Graduate Record Exam (GRE)
- A copy of the Candidate's Resume or Curriculum Vitae
- Written statement of background, interests, motivation, and goals
- Three (3) Letters of Recommendation from academic or professional sources
- Additional Ph.D. requirement: evidence of research capability
- International Students: TOEFL minimum 550 (paper), 213 (computer), 80 (internet)

Particular emphasis is placed on each candidate's written statement. This personal statement should be a clear and concise portrayal of the candidate's academic and professional background, their motivation to attend graduate school, their research interests and career goals, as well as any relevant strengths and distinguishing characteristics worthy of note.
Health Physics

Bachelor’s Degree (B.S., B.A.) or equivalent from an accredited College or University
An undergraduate grade point average (GPA) of 3.0 or greater where A = 4.0.

Formal coursework in the following topics:

- **Mathematics:** Calculus including limits, continuity, differentiation and integration of elementary and transcendental functions, sequences and series. Usually two semesters of calculus are sufficient.

- **General Physics:** Topics including the properties of forces, energy, momentum, heat, light, electrostatics, magnetism, with an understanding of dimensional analysis (quantities and units) and elementary modern physics. Usually two semesters of general physics are sufficient.

- **Biology:** Introduction to biology including characteristics of animals, genetics, the human body and interactions with the environment. Usually one semester of general biology is sufficient.

- **Chemistry:** Fundamentals of chemistry including atomic and molecular theory, gases, liquids, solids, solutions, acid/base reactions, oxidation/reduction reactions, and kinetics. Usually one semester of general chemistry is sufficient.

Submission of one official transcripts of all collegiate work completed.
Submission of official scores from the General Test section of the Graduate Record Examination (GRE).
Three letters of recommendation sent directly to the Department.

Interested persons are encouraged to read the Graduate and Professional Bulletin for additional information related to Admissions Requirements and Procedures at Colorado State University:

Toxicology

Although not required, course work in Bio-Chemistry, Organic Chemistry, and Physiology is highly recommended.

GRE or MCAT scores are not required for applications to toxicology.

Prior to applying to the toxicology PhD graduate program, please contact Dr. Marie Legare (marie.legare@colostate.edu), for availability of positions within this program.

Radiology Residency

D.V.M. degree (or equivalent) from an accredited college of Veterinary Medicine.
In addition to the on-line application and the $50 application fee, students applying for admission to combined bachelor's/master's programs must send the following materials directly to the department in which they plan to study:

1. Three letters of recommendation written by individuals in each of the following categories:
 a. Applicant’s undergraduate adviser.
 b. Applicant’s instructor in at least one course within his/her major who is not his/her adviser.
 c. Applicant’s instructor in a course outside of his/her major field of study.

2. A written “statement of purpose” that contains:
 a. A summary of long-term professional or personal goals.
 b. A statement regarding the applicant’s educational goals.
 c. A statement indicating how participating in the combined degree program will contribute to the applicant’s long-term goals.

3. A completed resume that contains the following:
 a. Record of all professional employment including dates of service (including military).
 b. List of any special skills or competencies (including certifications or licensures).
 c. List of publications, exhibitions, prizes, awards, or other recognitions.
 d. List of service activities (including community and charitable organizations)